From 1 - 10 / 99
  • Internal advice on tsunami, earthquake and severe wind hazards for the Kavieng Port region, derived from large-scale hazard assessments. This advice (refer TRIM D2021-55554) was provided to the Australia Pacific Climate Partnership (APCP) as part of Geoscience Australia's (GA's) contributions to the program. (In confidence report to APCP, not for distribution)

  • Internal advice on tsunami, earthquake and severe wind hazards for the Vanimo Port region, derived from large-scale hazard assessments. This advice (refer TRIM D2021-52746) was provided to the Australia Pacific Climate Partnership (APCP) as part of Geoscience Australia's (GA's) contributions to the program. (In confidence report to APCP, not for distribution)

  • In the last few years there have been several probabilistic seismic hazard assessments (PSHA) of Adelaide. The resulting 500 year PGA obtained are 0.059, 0.067, 0.109 and 0.141. The differences between the first three are readily accounted for by choice of GMPE, how faults are included and differences in recurrence estimation, with each of these having a similar level of importance. As no GMPEs exist for the Mt Lofty and Flingers Ranges the choices of GMPEs were all based on geological analogies. The choice of at what weighting to include low attenuation, that is a stable continental crust, GMPE was most important. At a return period of 500 year the inclusion of faults was not necessarily significant. The choice of whether the faults behaved with Characteristic or Gutenberg-Richter recurrence statistics had the highest impact on the hazard with the choice of slip rate the next most important. A low slip rate Characteristic fault, while increasing the hazard for longer return periods (i.e. ~2500 years), results in only a minor increase at 500 years. The magnitude frequency distribution b-value for the four studies were 1.043, 0.88, 0.915 and 0.724. For the same activity in the magnitude range of 3.0 to 3.5, the activity level at M 6.0 is an order of magnitude higher for a b-value of 0.724 compared to a b-value of 1.043. This increase in activity rate of larger earthquakes significantly increases the hazard. The average of the first three studies is 0.078±0.022 (0.056 -0.100) g. This range is reflecting the intrinsic uncertainty in calculating PSHAs where many of the inputs are poorly constrained. The results for the highest hazard level PSHA study (i.e. 0.141g) can be explained by their use of a low b-value (i.e. 0.724). M. Leonard1, R. Hoult2, P. Somerville3, G. Gibson2, D. Sandiford2, H. Goldsworthy2, E. Lumantarna2 and S Spiliopoulos1. 1Geoscience Australia, 2The University of Melbourne, 3 URS

  • Prior to the development of Australian-specific magnitude formulae, the 1935 magnitude corrections by Charles Richter – originally developed for southern California – was almost exclusively used to calculate earthquake magnitudes throughout Australia prior to the 1990s. Due to the difference in ground-motion attenuation between southern California and much of Australia, many historical earthquake magnitudes are likely to be overestimated in the Australian earthquake catalogue. A method has been developed that corrects local magnitudes using the difference between the original (inappropriate) magnitude corrections and the Australian-specific corrections at a distance determined by the nearest recording station likely to have recorded the earthquake. These corrections have reduced the rates of local magnitudes of 4.5 in the historical catalogue by about 30% since 1900, while the number of magnitude 5.0 earthquakes has reduced by about 60% in the same time period. The reduction in the number of moderate-to-large-magnitude earthquakes over the instrumental period yields long-term earthquake rates that are more consistent with present-day rates, since the development of Australian-specific magnitude formulae. The adjustment of historical earthquake magnitudes is important for seismic hazard assessments, which assume a Poisson distribution of earthquakes in space and time.

  • Geoscience Australia has produced an Atlas of Australian earthquake scenarios (the Atlas) to support planning and preparedness operations for emergency management agencies. The Atlas provides earthquake scenarios represent realistic “worst-case” events that may impact population centres around Australia. Such scenarios may also support seismic risk assessments for critical infrastructure assets to inform remediation actions that could be taken to improve resilience to rare seismic events in Australia. The Atlas of seismic scenarios uses the underlying science and data of the 2018 National Seismic Hazard Assessment (NSHA18) to identify the magnitudes and epicentre locations of these hypothetical earthquakes. Locations and magnitudes of earthquake scenarios are based upon deaggregation of the NSHA18 hazard model. The USGS ShakeMap software is used to produce ground motion intensity fields with the shaking levels being modified by seismic site conditions mapped at a national scale. Fault sources are incorporated into the Atlas where the magnitude of a given scenario exceeds a threshold magnitude of 6.0 and where the rupture length is likely to be longer than 10 km. If a scenario earthquake is located near a known fault within the Australian Neotectonic Features database, a partial or full-length rupture is modelled along the mapped fault. The Atlas generated two scenarios for each of the160 localities across Australia. The scenarios are based on some of the most likely earthquake magnitude-distance combinations estimated at each site. Output products include shaking contours for a range of intensity measures, including peak acceleration and velocity, as well as response spectral acceleration for 0.3, 1.0 and 3.0 seconds. Also included are raster images and the associated metadata used for generating the scenarios.

  • A multihazard (volcano, earthquake, tsunami) assessment for East New Britain Province, Papua New Guinea.

  • This document describes a structure for exchanging information to assist discovery and retrieval/transfer of flood information, including GIS flood mapping data. The draft class model represents metadata, data and summary information that supports the goals of the National Flood Risk Information Project (NFRIP) to improve the quality, consistency and accessibility of flood information. This document describes the data model that will be used to create an application schema.

  • Using the wind multiplier code (https://pid.geoscience.gov.au/dataset/ga/82481) and an appropriate source of classified terrain data, wind multipliers for all of Queensland at (approximately) 25 metre resolution were created. The wind multipliers have been used to guide impact assessments as part of the Severe Wind Hazard Assessment for Queensland.

  • One-dimensional shear-wave velocity (VS ) profiles are presented at 50 strong motion sites in New South Wales and Victoria, Australia. The VS profiles are estimated with the spectral analysis of surface waves (SASW) method. The SASW method is a noninvasive method that indirectly estimates the VS at depth from variations in the Rayleigh wave phase velocity at the surface.

  • Modern geodetic and seismic monitoring tools are enabling the study of moderate-sized earthquake sequences in unprecedented detail. Discrepancies are apparent between the surface deformation envelopes ‘detectable’ using these tools, and ‘visible’ to traditional ground-based methods of observation. As an example, we compare the detectible and visible surface deformation caused by a sequence of earthquakes near Lake Muir in southwest Western Australia in 2018. A shallow MW 5.3 earthquake on the 16th of September 2018 was followed on the 8th of November 2018 by a MW 5.2 event in the same region. Focal mechanisms for the events suggest reverse and strike-slip rupture, respectively. Interferometric Synthetic Aperture Radar (InSAR) analysis of the events suggests that the ruptures are in part spatially coincident and deformed the Earth’s surface over ~ 12 km in an east-west direction and ~ 8 km in a north-south direction. Field mapping, guided by the InSAR results, reveals that the first event produced an approximately 3 km long and up to 0.5 m high west-facing surface rupture, consistent with slip on a moderately east-dipping fault. No surface deformation unique to the second event was identifiable on the ground. New rupture length versus magnitude scaling relationships developed for non-extended cratonic regions as part of this study allow for the distinction between ‘visible’ surface rupture lengths (VSRL) from field-mapping and ‘detectable’ surface rupture lengths (DSRL) from remote sensing techniques such as InSAR, and suggest longer ruptures for a given magnitude than implied by commonly used scaling relationships.